Just as UV light is dangerous to our skin, it's also dangerous to our eyes. So it's important that we protect them from UV damage. UV light affects the front of the eye (cataract formation), while blue light causes damage to the back of the eye (risk of AMD). Nowadays, there's an increase in the use of digital devices and modern lighting—such as LED lights and compact fluorescent lamps (CFLs)—most of which emit a high level of blue light. CFLs contain about 25% of harmful blue light and LEDs contain about 35% of harmful blue light. Interestingly, the cooler the white LED, the higher the blue proportion. And by 2020, 90% of all of our light sources are estimated to be LED lighting. So, our exposure to blue light is everywhere and only increasing.
As baby boomers age, there's an increasing incidence of cataract and macular degeneration cases in the United States. In 2012, there were approximately 24 million cases of cataracts in people aged 40+ the United States,6 which is a 19% increase from 2000 numbers. For macular degeneration, two million people aged 50+ had late AMD in 2012,6 which is a 25% increase from 2000. By the year 2050, the cataract population is going to hit 50 million, whereas AMD tops off at around 5 million, it's estimated.7 So the bottom line is that cataract and AMD cases are expected to double over the next 30 years, in part because of the aging of the population. The blue-violet light that was discovered as part of this study is a 40 nm band of visible light that causes the maximum retinal cell death. Over time, our eyes are exposed to various sources that emit this blue-violet light (e.g., the sun, LED lighting, CFLs). Combine that with the use of tablets, TVs, computer screens and smart phones, and there's no doubt our exposure to blue-violet light is on the increase. This cumulative and constant exposure to the blue-violet light is going to accumulate over time and has the potential to cause damage to the retinal cells, which is going to slowly lead to retinal cell death and can in turn lead to AMD.
The level of light emitted by newer energy-saving lighting techniques (e.g., LED, CFLs) is very high. For example, CFLs, white LED light and even sunlight emit high levels of blue-violet light compared to the rest of the blue light spectrum. This underscores the need for us to protect our eyes from the harmful bands of blue-violet light.
PROTECTION FROM UV AND BLUE-VIOLET LIGHT
How can we block the harmful blue rays of light but allow the helpful blue rays of light to penetrate through and get into the eye? Lesnick Optical offers noglare technology that filters out dangerous blue light and has three key features: 1) it selectively filters out harmful blue-violet and UV light, 2) it allows the beneficial visible light, including the blue-turquoise light, to pass through and 3) it maintains an excellent transparency of the lens, so there's no color distortion and you get excellent clarity with the lens.